Thinking Recursively
Recursion is the property of defining a function in terms of itself.
public class Factorial { public static int fact(int n) { int p = 1; for (int i = 1; i <= n; i++) { p *= i; } return p; } public static void main(String[] args) { int result = fact(5); System.out.println("Factorial: " + result); } }
public class Factorial { public static int fact(int n) { if (n == 0) return 1; else return n * fact(n - 1); } public static void main(String[] args) { int result = fact(5); System.out.println("Factorial: " + result); } }
Each recursive function call adds a new memory zone in the stack until it reaches the base case.
public class Combinations { public static int comb(int n, int k) { if (n == k || k == 0) return 1; else return comb(n - 1, k - 1) + comb(n - 1, k); } public static void main(String[] args) { System.out.println(comb(5, 2)); } }
Each recursive function maintains its local variables separately on the stack. A function call will continue until it reaches the base case.
public class Factorial { public static void fact(int n, int[] r) { if (n == 0) r[0] = 1; else { fact(n - 1, r); r[0] *= n; } } public static void main(String[] args) { int[] a = new int[1]; fact(4, a); System.out.println(a[0]); } }
public class Factorial { public static int fact(int n) { int result; if (n == 0) result = 1; else result = fact(n - 1) * n; return result; } public static void main(String[] args) { int x = fact(3); System.out.println("Factorial of 3: " + x); } }