Definition

Recursion is the property of defining a function in terms of itself.

Mathematical Recursion Examples

Types of Recursion

Factorial Function in Java

Iterative Approach

public class Factorial {
    public static int fact(int n) {
        int p = 1;
        for (int i = 1; i <= n; i++) {
            p *= i;
        }
        return p;
    }
    public static void main(String[] args) {
        int result = fact(5);
        System.out.println("Factorial: " + result);
    }
}
        

Recursive Approach

public class Factorial {
    public static int fact(int n) {
        if (n == 0)
            return 1;
        else
            return n * fact(n - 1);
    }
    public static void main(String[] args) {
        int result = fact(5);
        System.out.println("Factorial: " + result);
    }
}
        

Stack Execution in Recursion

Each recursive function call adds a new memory zone in the stack until it reaches the base case.

Example: Recursive Combinations Function

public class Combinations {
    public static int comb(int n, int k) {
        if (n == k || k == 0)
            return 1;
        else
            return comb(n - 1, k - 1) + comb(n - 1, k);
    }
    public static void main(String[] args) {
        System.out.println(comb(5, 2));
    }
}
        

Recursive Call Execution

Each recursive function maintains its local variables separately on the stack. A function call will continue until it reaches the base case.

Key Observations in Recursion

How to Implement Recursive Calls?

Example of a Void Recursive Function

public class Factorial {
    public static void fact(int n, int[] r) {
        if (n == 0)
            r[0] = 1;
        else {
            fact(n - 1, r);
            r[0] *= n;
        }
    }
    public static void main(String[] args) {
        int[] a = new int[1];
        fact(4, a);
        System.out.println(a[0]);
    }
}
        

Example of a Non-Void Recursive Function

public class Factorial {
    public static int fact(int n) {
        int result;
        if (n == 0)
            result = 1;
        else
            result = fact(n - 1) * n;
        return result;
    }
    public static void main(String[] args) {
        int x = fact(3);
        System.out.println("Factorial of 3: " + x);
    }
}